The mass of a skydiver remains constant while they are free falling. Mass is a measure of the amount of matter in an object and does not change regardless of the forces acting on it, such as gravity or air resistance. However, the skydiver's weight, which is the force of gravity acting on their mass, changes due to the effects of air resistance as they accelerate and reach terminal velocity.
The main forces acting on a skydiver are gravity, which pulls the skydiver downward, and air resistance (drag), which acts in the opposite direction of motion. As the skydiver falls, air resistance increases until it balances out the force of gravity, leading to a constant velocity known as terminal velocity.
When a skydiver jumps out of a hovering helicopter with forward velocity, the skydiver's initial velocity will be a combination of the helicopter's forward velocity and the vertical velocity due to gravity. As the skydiver falls, their acceleration is primarily due to gravity acting downward, with air resistance also playing a role. The acceleration experienced by the skydiver will be constant at approximately 9.8 m/s^2 downward, ignoring air resistance.
When the two forces acting on the skydiver are balanced, the acceleration is zero. This occurs when the force of gravity pulling the skydiver downward is equal to the air resistance acting upward. At this point, the skydiver reaches terminal velocity, meaning they will continue to fall at a constant speed without accelerating further.
When a skydiver reaches terminal speed, the air resistance is equal to the force of gravity acting on the skydiver. At this point, the acceleration of the skydiver is zero, as the forces are balanced. This means that the skydiver is falling at a constant speed due to the opposing forces being equal.
The overall net force acting on a skydiver is the force of gravity minus air resistance. Initially, as the skydiver falls, gravity is the dominant force causing acceleration. As the skydiver gains speed, air resistance increases, eventually balancing out the force of gravity to reach a terminal velocity where the net force is zero.
When a skydiver opens his parachute, air resistance (also known as drag force) increases. This is due to the parachute creating a larger surface area and creating more resistance against the air, which slows down the skydiver's fall. This increased air resistance counterbalances the force of gravity acting on the skydiver.
When a skydiver is accelerating downward, the forces are unbalanced. The force of gravity acting downward on the skydiver is greater than the air resistance force pushing upward, causing the skydiver to accelerate downward.
The acceleration of the skydiver can be calculated using Newton's second law: F = ma, where F is the force of gravity - air resistance, m is the mass of the skydiver, and a is the acceleration. The acceleration will depend on the exact value of air resistance acting on the skydiver.
When a skydiver reaches terminal velocity, the force of weight acting downwards on the skydiver is equal to the force of drag acting upwards. This means that there is no net force acting on the skydiver, resulting in a constant velocity rather than acceleration.
Once a skydiver jumps off the plane, they will begin picking up speed. However, as the speed of the skydiver increases, the amount of air resistance acting upon them will also increase. The skydiver will continue to accelerate while his or her weight is greater than the air resistance. When the force of the air resistance becomes equal to the weight of the skydiver, the skydiver will stop accelerating and will continue falling at a constant speed, this is known as the terminal velocity. While travelling at terminal velocity, the skydiver will be able to adjust his or her body position in a way that will increase or decrease the air resistance and allow the diver to alter their speed. Releasing his or her parachute will drastically increase the amount of air resistance and therefore slow their descent significantly.
Certainly. Say you have an object that has been falling through the air for a long time, say a skydiver. After falling for a long time, the skydiver will fall at a constant velocity. This is called terminal velocity, and this is when the air resistance pushing up around the skydiver is equal to the force of gravity pulling the skydiver down. The skydiver is not accelerating. By using F= ma, with zero acceleration, there is zero net force. The skydiver is moving as if there are no forces acting on the skydiver.