as much as en elf
For a simple answer, we have to ignore air resistance. As the skydiver's downward momentum increases, the earth's upward momentum increases by an identical amount. The total momentum of the earth-skydiver system remains constant.
The maximum weight for a person to skydive is 220 pounds.
At terminal velocity, the net force on the skydiver is zero. This occurs because the downward gravitational force, which is equal to the weight of the skydiver (25 N), is balanced by the upward drag force due to air resistance. As a result, the skydiver falls at a constant speed without accelerating.
gravity
500 N is pressumably the weight, due to gravity. "Terminal velocity" means that the forces are in balance; the total force acting on the skydiver are zero. This is only possible if there is a 500 N force due to friction, to counteract the weight.
When a skydiver reaches terminal velocity, the force of weight acting downwards on the skydiver is equal to the force of drag acting upwards. This means that there is no net force acting on the skydiver, resulting in a constant velocity rather than acceleration.
adding weight and by decresing air recistance
Earth weight
Earth weight
If you're telling us that the skydiver weighs 845 newtons, then that's the magnitudeof the forces of gravity between him and the Earth whenever he's near the Earth.
If a skier is in a jump, then a skier and skydiver is pretty much the same thing. In general though, a skydiver has only air resistance, the skier has air resistance and friction with the ski-snow, so the skydiver has an edge on speed.
Europa's weight is about 13.5% of Earth's weight. This is because Europa has a much lower mass and gravity compared to Earth.