Boyle's Law states that the pressure of a gas is inversely proportional to its volume when temperature is held constant. One practical application of Boyle's Law is in breathing: when the diaphragm contracts, the volume of the thoracic cavity increases, leading to a decrease in pressure. This pressure difference causes air to flow into the lungs. Conversely, when the diaphragm relaxes, the volume decreases, increasing pressure and forcing air out of the lungs.
When you pop a balloon by overfilling it with air, you are applying Boyles Law. When a nurse fills a syringe before she gives you a shot, she is working with Boyles Law. Sport and commercial diving. Underwater salvage operations rely on Boyles Law to calculate weights from bottom to surface. When your ears pop on a plane as it rises from takeoff, that's Boyles Law in action.
They are both gas laws?
Boyle's Law is the inverse relationship between pressure and volume.
Boyles Law
Boyle's Law is an indirect relationship. (Or an inverse)
Boyles Law deals with conditions of constant temperature. Charles' Law deals with conditions of constant pressure. From the ideal gas law of PV = nRT, when temperature is constant (Boyles Law), this can be rearranged to P1V1 = P2V2 (assuming constant number of moles of gas). When pressure is constant, it can be rearranged to V1/T1 = V2/T2 (assuming constant number of moles of gas).
The kinetic and potential energy stored in the corn.
yes im not sure why, but yea
Boyles law "happens" when the temperature is held constant and the volume and pressure change.
so the stundent can learn more about math.
a graph law graph shows the relationship between pressure and volume
4.1Atmospheres