answersLogoWhite

0

Particle theory of light can explain Photoelectric Effect,Compton effect,Pair production....

wave theory of light can explain interference,refraction...

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
ReneRene
Change my mind. I dare you.
Chat with Rene
More answers

Particle theory of light, proposed by Isaac newton, views light as composed of discrete particles called photons. Wave theory of light, formulated by Thomas Young, describes light as a wave propagating through a medium. The wave theory better explains phenomena like interference and diffraction, while the particle theory accounts for aspects such as the photoelectric effect.

User Avatar

AnswerBot

10mo ago
User Avatar

Add your answer:

Earn +20 pts
Q: What is the difference between particle and wave theory of light?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

Which theory of light is the photon more consistent with the wave theory or the particle theory?

The photon is more consistent with the particle theory of light, as it is a discrete bundle of electromagnetic energy. However, the wave-particle duality principle states that light can exhibit both wave-like and particle-like behavior depending on the experimental setup.


Is Compton effect support the wave theory of light or particle theory?

The Compton effect supports the particle theory of light, as it demonstrates that photons (particles of light) can interact with matter like particles and exhibit particle-like behavior by transferring momentum to electrons during scattering. This is not consistent with the wave theory of light, which views light as a continuous wave rather than individual particles.


Who first propose particle theory of light?

The particle theory of light was first proposed by Sir Isaac Newton in the 17th century. He suggested that light is made up of tiny particles called corpuscles. This theory was later challenged by the wave theory of light proposed by Christian Huygens.


What is the fundamental nature of light: are its properties better explained by the wave theory or the particle theory, in the context of waves vs particles?

The fundamental nature of light is better explained by both the wave theory and the particle theory. Light exhibits properties of both waves and particles, known as wave-particle duality. The wave theory explains phenomena like interference and diffraction, while the particle theory explains phenomena like the photoelectric effect. Both theories are needed to fully understand the behavior of light.


Which cannot be explained with wave theory of light?

Wave-particle duality, which suggests that light sometimes behaves like a wave and other times like a particle, cannot be fully explained by the wave theory of light. The photoelectric effect and Compton effect also challenge pure wave theory by demonstrating particle-like behavior of light.