Electrical resistivity (also known as resistivity, specific electrical resistance, or volume resistivity) quantifies how strongly a given material opposes the flow of electric current. A low resistivity indicates a material that readily allows the movement of electric charge. Resistivity is commonly represented by the Greek letter Ï (rho). The SI unit of electrical resistivity is theohmâ‹…metre (Ω⋅m)
It defined as resistance offerde by a unit length and cross section area conductor.
It depends on material used.
it depends on relexation time and temperature.
The resistivity of a material does not depend on the diameter of the wire. Resistivity is an intrinsic property of the material and is constant regardless of the wire's diameter.
Resistivity is a measure of a material's ability to resist the flow of electric current. It depends on factors such as the material's composition, temperature, and dimensions. Materials with high resistivity impede the flow of current more than those with low resistivity.
Resistivity is an intrinsic property of a material and is not affected by the dimensions of the material. Resistivity is determined by the material's composition and structure. The resistivity of a material remains constant as long as the material is uniform.
Yes, resistivity depends on the length and cross-sectional area of the material. Resistivity is calculated using the formula ρ = R(A/L), where ρ is the resistivity, R is the resistance, A is the cross-sectional area, and L is the length of the material.
If the length of a material is doubled, the resistivity remains the same. Resistivity is an intrinsic property of a material and is not affected by the dimensions of the material. However, the resistance of the material will double if the length is doubled, according to the formula R = ρ * (L/A), where R is resistance, ρ is resistivity, L is length, and A is cross-sectional area.
The resistivity of a material does not depend on the diameter of the wire. Resistivity is an intrinsic property of the material and is constant regardless of the wire's diameter.
No. Resistance does.
resistivity and resistance are two diff. things...........resistance depends on length and thickness resisitivity too depends on the area and length resistivity=resistance*area/length
Resistivity is a measure of a material's ability to resist the flow of electric current. It depends on factors such as the material's composition, temperature, and dimensions. Materials with high resistivity impede the flow of current more than those with low resistivity.
Resistivity is an intrinsic property of a material and is not affected by the dimensions of the material. Resistivity is determined by the material's composition and structure. The resistivity of a material remains constant as long as the material is uniform.
Temperature is a common factor that affects both resistance and resistivity. An increase in temperature generally leads to an increase in resistance and resistivity of a material. This is because higher temperature causes more atomic vibrations and collisions within the material, hindering the flow of electrons and increasing resistance.
Yes, resistivity depends on the length and cross-sectional area of the material. Resistivity is calculated using the formula ρ = R(A/L), where ρ is the resistivity, R is the resistance, A is the cross-sectional area, and L is the length of the material.
If the length of a material is doubled, the resistivity remains the same. Resistivity is an intrinsic property of a material and is not affected by the dimensions of the material. However, the resistance of the material will double if the length is doubled, according to the formula R = ρ * (L/A), where R is resistance, ρ is resistivity, L is length, and A is cross-sectional area.
Yes, resistivity does depend on the dimensions of the conductor. The resistivity of a material is an intrinsic property, but the resistance of a conductor is also influenced by its dimensions such as length, cross-sectional area, and shape. These dimensions affect the resistance of the conductor through the formula R = ρ * (L/A) where ρ is resistivity, L is length, and A is the cross-sectional area.
The factors affecting resistivity include the material's composition, temperature, and impurities present. Different materials have different resistivities due to variations in electron mobility and collisions with lattice vibrations. Temperature affects resistivity because it changes the lattice vibrations and electron collisions within the material. Impurities can also increase resistivity by disrupting the flow of electrons.
There are three, not four, factors that determine the resistance of a conductor. These are the length of a conductor, its cross-sectional area, and its resistivity.As resistivity is affected by temperature, you could say that temperature indirectly affects resistance but, strictly, temperature is affecting the resistivity not the resistance -which is why it is not considered a 'fourth' factor.So, resistance = resistivity x (length/area)
Resistance is directly proportional to the resistivity and length of the conductor, and inversely-proportional to its cross-sectional area. As resistivity is affected by temperature, we can say that temperature indirectly affects resistance.