The molecule used to replenish RuBP in the Calvin Cycle is phosphoglycerate (PGA). PGA is converted to RuBP through a series of enzymatic reactions, allowing the cycle to continue and fix more carbon dioxide.
The Calvin Benson cycle uses ATP (adenosine triphosphate), NADPH (Nicotinamide adenine dinucleotide phosphate), and CO2 (carbon dioxide) to create glucose.
RuBP, PGA, ATP
Carbon dioxide and RuBP combine to make PGA
RuBP, PGA, ATP
RuBP, PGA, ATP
RuBP, PGA, ATP
RuBP, PGA, ATP
The three basic events of light-independent reactions (Calvin cycle) are carbon fixation, reduction, and regeneration of RuBP. Carbon fixation involves utilizing CO2 to convert it into a usable form (3-PGA). Reduction involves converting 3-PGA into G3P using ATP and NADPH. Regeneration of RuBP involves converting G3P into RuBP to restart the cycle.
No, in phosphorylation ATP is used to add a phosphate group to a molecule, but it is not used to regenerate RuBP. RuBP is regenerated through the Calvin cycle in photosynthesis, where the input of ATP and NADPH molecules is used to convert PGA into RuBP.
Glyceraldehyde-3-phosphate (G3P) is the molecule from the Calvin cycle that is used to replenish ribulose-1,5-bisphosphate (RuBP). G3P is produced during the reduction phase of the Calvin cycle and can be converted back to RuBP through a series of enzymatic reactions.
RuBP stands for ribulose-1,5-bisphosphate. It is a five-carbon molecule involved in the Calvin cycle, a series of reactions in photosynthesis where carbon dioxide is converted into glucose. RuBP is regenerated during the cycle to ensure its continuous availability for fixing carbon dioxide.