F = (mass) x (acceleration) = (55) x (15) = 825 newtons.
They are both vector quantities and acceleration is in the direction of the net force.
When an objects net force is zero, its acceleration is zero. No force , no acceleration.
No, the acceleration of an object is in the direction of the net force applied to it. If the net force is in the same direction as the object's motion, the acceleration will be in the same direction. If the net force is opposite to the object's motion, the acceleration will be in the opposite direction.
The force that causes acceleration is known as net force.
Acceleration is proportional to net force.That means that acceleration is equal to (net force) times (something).The 'something' is [ 1 / (the mass of the object being accelerated by the force) ].
Acceleration is directly proportional to the net force acting on an object. This relationship is described by Newton's second law of motion, which states that the acceleration of an object is directly proportional to the net force applied to it and inversely proportional to its mass.
The basic equation is: force equals mass times acceleration.
The net force acting on an object is directly proportional to its acceleration, according to Newton's second law of motion. When the net force increases, the acceleration of the object increases as well. Conversely, when the net force decreases, the acceleration of the object decreases.
If the object is moving along a horizontal surface with a constant acceleration,then the net vertical force on it is zero, and the net horizontal force on it is(the pushing force) minus (any kinetic friction force where it rubs the surface).The numerical value of that net force is(the acceleration) times (the object's mass).
Acceleration can be altered by changing either the magnitude or direction of the net force acting on an object. Increasing the net force will increase acceleration, while decreasing the net force will decrease acceleration. Changing the mass of an object will also affect its acceleration, with a greater mass resulting in less acceleration for the same force applied.
-- When the net force on an object is not zero, the object undergoes accelerated motion.-- The magnitude of the acceleration is the ratio of the net force to the object's mass.-- The direction of the acceleration is the same as the direction of the net force.