To start with there is gravitational attraction. As soon as the skydiver starts falling, (s)he will experience the drag force due to air resistance. The gravitational force is essentially constant but the drag increases as the diver's velocity increases until it equals gravity. The diver is the falling at terminal velocity and will continue to do so until the parachute is operated.
An open parachute increases air resistance by capturing and deflecting air molecules. This creates drag force that opposes the skydiver's downward motion, slowing their descent. The increased air resistance allows the skydiver to fall at a more manageable and safer speed.
-- The force of gravity is unchanged before and after.-- The force of air resistance on the skydiver is greater before, and less after,because she is falling slower after the parachute opens.-- The effect on her of air resistance is greater after the parachute is open. Theincreased air resistance itself acts on the parachute, and its effect is transferredto the skydiver through her harness.
the parachute has a big space area so that when he falls through the air the air molecules get collected by the parachute therefore reducing speed of falling down PS. doesnt mean he doesnt fall at all
-- The force of gravity is unchanged before and after.-- The force of air resistance on the skydiver is greater before, and less after,because she is falling slower after the parachute opens.-- The effect on her of air resistance is greater after the parachute is open. Theincreased air resistance itself acts on the parachute, and its effect is transferredto the skydiver through her harness.
An open parachute increases air resistance by creating a large surface area that catches and slows down the air around it. This creates drag that counteracts the force of gravity, slowing the skydiver's descent. The inflated canopy also increases the overall mass of the skydiver-parachute system, further enhancing the air resistance.
When he or she wants the parachute to open
The force changes to open a skydiver's parachute is primarily gravity as they descend. The force that stays the same is air resistance, which slows down the descent and helps regulate the descent speed.
They jump out of the plane and accelerate to terminal velocity.
by increasing surface area
slowing down the speed at which the skydiver falls. The parachute increases the air resistance by creating drag, which counteracts the force of gravity pulling the skydiver down. This allows for a slower descent and a softer landing.
An open parachute increases air resistance for a falling skydiver by capturing air in its canopy, creating drag that counteracts gravity and slows the descent. The increased surface area of the parachute also results in more air molecules colliding with it, further enhancing the resistance. This process allows the skydiver to decelerate safely and control their descent back to the ground.
When a skydiver opens the parachute, he or she does not move upward, but rather, continues to move downward, but at a slower speed. Sometimes there is an illusion that the skydiver is moving upward, because if there are several people skydiving together, and one of them opens a parachute while the others don't, you will see the skydiver with the open parachute moving upward with relation to the other skydivers. But they are all still moving downward, they are just doing so at different speeds.