answersLogoWhite

0


Best Answer

Because you need to overcome inertia before you can lift anything

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why moment of inertia is important in weight lifting machines?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How do you decide the object which has the highest moment of inertia out of two objects?

Just moment of inertia is incomplete requirement as the axis about which it is to be measured is also very important


What is the domensions for moment of inertia?

Dimensional formula of moment of inertia = [ML2T0 ]


What is meant by moment of inertia in Induction motors?

The second moment of a force is called as moment of inertia.


Moment of inertia and torsional vibrations?

in torsional vibrations moment of inertia is a very important determining factor. it is a quantitative measure of the resistance of an object to torsion. it is synonymous to mass in displacement systems. the greater the moment of inertia the lesser the degree of torsional vibrations and vice versa. moment of inertia relates torsional vibrations to the geometry of the part considered irrespective of its composing material and its strength.


What is the unit for a polar moment of inertia?

Moment of inertia has unit kg m2


Mass moment of inertia of a flywheel?

define moment of inertia§ I is the moment of inertia of the mass about the center of rotation. The moment of inertia is the measure of resistance to torque applied on a spinning object (i.e. the higher the moment of inertia, the slower it will spin after being applied a given force).


How do you determine the moment of inertia?

The moment of inertia of an object depends on its mass distribution and shape. For simple shapes, such as a point mass or a solid cylinder, mathematical formulas can be used to calculate the moment of inertia. For complex shapes, numerical methods or integration techniques may be necessary to determine the moment of inertia.


What is the difference between mass moment of inertia and area moment of inertia?

Mass moment of inertia measures an object's resistance to rotational motion due to its mass distribution, while area moment of inertia measures an object's resistance to bending due to its shape and cross-sectional area. Mass moment of inertia depends on both the mass and its distribution, while area moment of inertia depends on the shape and how the material is distributed in the cross-section.


Can moment of inertia be negative?

No, moment of inertia cannot be negative as it is a physical quantity that represents an object's resistance to changes in its rotation. Negative values for moment of inertia do not have physical meaning.


What variables contribute to moment of inertia?

The axis about which the body is being rotated and the geometry of the body are important. The further away material (in terms of area) is from the centroid of the body the higher the moment of inertia will be, which is why an I-beam is good in bending. If it's the mass moment of inertia which is used in dynamics for Euler's angular momentum equation. Then the mass of the body is important. The further away mass is from the axis of rotation the greater the mass moment of inertia will be. This is why when a figure skater pulls their arms into her body during a spin she begins to spin faster. The mass of their arms is now closer to their axis of rotation lowering their mass moment of inertia and decreasing their resistance to rotation.


Importance of moment of inertia?

The moment of inertia tells us how easy or how difficult it is to make something rotate.


What is difference between polar moment of inertia and moment of inertia?

The polar moment of inertia measures an object's resistance to torsional deformation when subjected to a moment of force perpendicular to its axis, while the moment of inertia measures an object's resistance to angular acceleration when subjected to a twisting force. The polar moment of inertia accounts for distribution of mass around an axis, while the moment of inertia considers mass distribution relative to a specific axis.