answersLogoWhite

0

The sliding filament theory is the basic summary of the process of skeletal muscle contraction. Myosin moves along the filament by repeating a binding and releasing sequence that causes the thick filament to move over the thinner filament. This progresses in sequential stages. By progressing through this sequence the filaments slide and the skeletal muscles contract and release.

First Stage:
The first stage is when the impulse gets to the unit. The impulse travels along the axon and enters the muscle through the neuromuscular junction. This causes full two to regulate and calcium channels in the axon membrane to then open. Calcium ions come from extra cellular fluid and move into the axon terminal causing synaptic vessels to fuse with pre synaptic membranes. This causes the release of acetylcholine (a substance that works as a transmitter) within the synaptic cleft. As acetylcholine is released it defuses across the gap and attaches itself to the receptors along the sarcolemma and spreads along the muscle fiber.

Second Stage:
The second stage is for the impulse spreads along the sarcolemma. The action potential spreads quickly along the sarcolemma once it has been generated. This action continues to move deep inside the muscle fiber down to the T tubules and the action potential triggers the release of calcium ions from the sarcoplasmic reticulum.

Third Stage:
During the third stage calcium is released from the sarcoplasmic reticulum and actin sites are activated. Calcium ions once released begin binding to Troponin. Tropomyosin blocking the binding of actin is what causes the chain of events that lead to muscle contraction. As calcium ions bind to the Troponin it changes shape which removes the blocking action of Tropomyosin (thin strands of protein that are wrapped around the actin filaments). Actin active sites are then exposed and allow myosin heads to attach to the site.

Fourth Stage:
The fourth stage then begins in which myosin heads attach to actin and form cross bridges, ATP is also broken down during this stage. Myosin binds at this point to the exposed binding sites and through the sliding filament mechanism the muscles contract.

Fifth Stage:
During the fifth stage the myosin head pulls the Actin filament and ADP and inorganic Phosphate are released. ATP binding allows the myosin to detach and ATP hydrolysis occurs during this time. This recharges the myosin head and then the series starts over again.

Stage Six:
Cross bridges detach while new ATP molecules are attaching to the myosin head while the myosin head is in the low-energy configuration. Cross bridge detachment occurs while new ATP attaches itself to the myosin head. New ATP attaches itself to the myosin head during this process.

Stage Seven:
During stage seven the ATP is broken down and used as energy for the other areas including new cross bridge formation. Then the final stage (stage 8) begins and a drop in stimulus causes the calcium concentrate and this decreases the muscle relaxation.

User Avatar

Wiki User

16y ago

What else can I help you with?

Related Questions

The sliding filament model of contraction involves .?

The sliding filament model of contraction involves actin filaments overlapping myosin filaments.


Which myofilaments actually do the pulling during the sliding filament model of muscle contraction?

thick filaments


What is the model that best describes the contraction of the muscle called?

The sliding filament theory is the model that best describes muscle contraction. It explains how actin and myosin filaments slide past each other, resulting in muscle fiber shortening and contraction. This theory is widely accepted in the field of muscle physiology.


What filament is responsible for the pulling and what filament is pulled in the sliding filament theory?

In the sliding filament theory of muscle contraction, the thin filament (actin) slides over the thick filament (myosin). Myosin is responsible for pulling the actin filaments towards the center of the sarcomere during muscle contraction.


In the sliding filament mechanism the thin filament is being pulled toward the?

M-line, causing overlap with the thick filament during muscle contraction. This results in the sarcomere shortening and overall muscle contraction.


Sliding filament model which proteinS have a calcium binding site?

In the sliding filament model of muscle contraction, the protein troponin has a calcium binding site on the troponin C subunit. When calcium binds to troponin C, it triggers a conformational change in the troponin-tropomyosin complex, allowing myosin heads to interact with actin and initiate muscle contraction.


Who proposed the sliding filament theory?

it was a collaboration between Jean Hanson and Hugh Huxley


Physical evidence that supports the sliding filament theory of muscle contraction includes?

decreased width of the H band during contraction


In isometric contraction how does the muscle stay the same length when the sarcomeres are shortening according to the sliding filament theory?

Dear freind! there is not any filamnet sliding in isometric contraction and so there is no work...


Which protein of the sarcomere is the thick filament made of?

The thick filament of the sarcomere is primarily made of the protein myosin. Myosin molecules aggregate to form the thick filaments, which interact with the thin filaments (primarily composed of actin) during muscle contraction. This interaction is crucial for the sliding filament model of muscle contraction, allowing muscle fibers to shorten and generate force.


Is myosin a thick filament that forms the cross bridge in a protein?

Yes, myosin is a thick filament that plays a crucial role in muscle contraction. It forms cross-bridges with actin, a thin filament, facilitating the sliding filament mechanism. The interaction between myosin and actin, powered by ATP hydrolysis, allows for muscle contraction and movement.


What myofilament does the pulling?

The myosin myofilament pulls on the actin myofilament during muscle contraction. This interaction, known as the sliding filament theory, results in the shortening of the sarcomere and muscle contraction.

Trending Questions
What does IFBB stand for? What are the differences between a Bowflex machine and a weight stack machine, and which one would be more suitable for my fitness goals? What are some effective exercises and strategies for a quad hypertrophy workout? What are the best calf machines for home use? What will give you better results... Running 2 miles nonstop or running 3 miles at a quicker pace but taking several walking breaks? Does the wii fit have good yoga? Give example of activities in each components? When beginning a cardio respiratory training regimen it's best to plan for sessions per week? What is the significance of the keyword "thenx" in the context of fitness and calisthenics training? How can I properly perform a landmine sumo squat to maximize its benefits for my lower body strength and muscle development? Why does marijuana make you tired? Hi I am 5' and my weight is 125 pounds i want to reach 110 pounds can I do that in a month If yes How much do I need to exercise and how much should I eat? What are some stomach exercises for pregnant women? What does skipping into school means? What do I need to do to effectively burn fat? What equipment is recommended for strengthening the back muscles effectively? What are the differences between a dual pulley row machine and a single pulley row machine in terms of effectiveness and muscle engagement? Water aerobics and step aerobics are cardivovascular exercises? What should you do with your race medals? Are deserts getting bigger or smaller?