answersLogoWhite

0

It appears that you wish to know which would result in falling faster, parachuting from an airplane flying above the earth, or parachuting from one flying above the moon.

The moon has no air, so whether you use a parachute or not would make no difference. You would fall at an acceleration of about one-sixth that of earth, or about 1.6 meters per second per second. The velocity at which you hit the ground depends on the height. It's the square root of twice the height times the acceleration. From 10 meters up you would land at 5.6 m/s, which might be survivable. Perhaps you could try to land on top of your useless parachute, as a cushion. From 100 meters you would hit at about 18 m/s, which is over 40 miles per hour. From "regular" airplane height, 1000 meters or more, your impact velocity would be over 60 m/s.

In earth's atmosphere your fall would be limited to perhaps 200 km per hour even without a parachute, because of the friction of the air on your body. With a parachute, you could fall very slowly, perhaps 10 km/h (that's like 3 m/s or 6 miles/hour) or less, and avoid injury.

The greatest difficulty in your experiment would be flying the airplane above the moon, because (as we already noted) the moon lacks an atmosphere. Instead you would need to use a rocket, or build a tall tower from which to jump. In either case, you would almost certainly be killed upon striking the ground, regardless of the moon's lesser gravity. As an exercise, you should calculate the greatest height from which your fall would not cause you injury.

Some of the numbers shown here are undoubtedly in error. Velocities are shown in miles/hour, m/s and km/h, and the conversions between them were sloppy. See

http://en.wikipedia.org/wiki/Equations_of_Motion

for the correct equations, and work out the actual consequences of your experiment for yourself.

User Avatar

Wiki User

12y ago

What else can I help you with?

Related Questions

Would a bowling ball and a penny hit the ground at the same time if dropped from an equal height?

Yes


When You Drop An Object From A Certain Height It Takes Time T To Reach The Ground With No Air Resistance. If You Dropped It From Three Times That Height How Long Would It Take To Reach The Ground?

When an object is dropped from a certain height, the time it takes to reach the ground is independent of the height (assuming no air resistance). Therefore, whether you drop the object from three times the initial height or the original height, it will still take the same time (T) to reach the ground.


What would happen if an apple and an orange were dropped from the same height at the same time?

They would both SPLAT on the ground at the same instant.


Would feather and a nail reach the ground at the same time?

No, a feather and a nail would not reach the ground at the same time if dropped at the same height in a vacuum. This is because the feather experiences more air resistance, slowing its fall compared to the nail which falls faster due to its higher mass.


What will hit the ground first a bowling ball or an apple?

Assuming both were dropped from the same height above ground, in a vacuum both would hit the ground at the same time. In a significant atmosphere (e.g. average ground-level on Earch) the bowling ball would hit the ground first.


Would a ball dropped from 5 feet on the moon hit the ground faster that a ball dropped from five feet on the earth?

No, it would hit slower because gravity on the moon is 1/6 the gravity on earth.


If there were no air resistance how did the speeds of a feather and a penny compare?

If there was no air resistance and a feather and a penny were dropped from the same height they would both pick up speed by the same amount and they would hit the ground at the same speed and at the same time.


Would 300 pounds fall faster than a 100 pounds?

assuming that they are dropped from the same height, no, gravity accelerates all objects equally regardless of mass


Suppose a baseball and a marble are dropped at the time from the same height which ball would land first?

Discounting any friction with the air, they would both hit the ground at the same time.


How many seconds does it take for a volleyball to hit the ground from feet in the air?

The time it takes for a volleyball to hit the ground when dropped from a height depends on the height it falls from. Using the formula for free fall ( t = \sqrt{\frac{2h}{g}} ), where ( h ) is the height in meters and ( g ) is the acceleration due to gravity (approximately ( 9.81 , m/s^2 )), you can calculate the time. For example, if dropped from 2 meters, it would take about 0.64 seconds to hit the ground.


If 2 balls are dropped from different floors of a building which ball has greater acceleration?

Both balls would have the same acceleration due to gravity, regardless of the height from which they were dropped. This is because the acceleration due to gravity is constant and does not depend on the initial position of the objects.


If two stones one big and one small are dropped at the same time which one will reach the ground first?

Both stones would reach the ground at the same time, regardless of their size, assuming they are dropped from the same height and at the same time. This is due to the principle of gravitational acceleration, which causes all objects to fall at the same rate regardless of their mass.