Sections of:cones, spheres, ellipsoids, tori, paraboloids, hyperboloids.In fact, consider the graph of any function in 2-dimensions that is always non-negative. Rotate the curve around the x-axis to generate a 3-d shape. A straight line will generate a cone, a square root function will generate a paraboloid, a semicircle will generate a sphere and so on. A wobbly line will generate a lumpy 3-d shape [NB: wobbly and lumpy are very technical terms ;) ]A plane at right angles to the x-axis will intersect all these curves in a circle.
2 x 3 x 5 x d x d x d x d x d = 30d5
2 x 3 x 5 x d x d x d x d x d = 30d5
4d x d x d = 4d3
Well for one you cant buy Alex Rider the Gemini Project because it doesn't exist what your after is Alex Rider Point Blanc and as for that you can buy it in many places like amazon or got to the libary and get it :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :)
Show that sec'x = d/dx (sec x) = sec x tan x. First, take note that sec x = 1/cos x; d sin x = cos x dx; d cos x = -sin x dx; and d log u = du/u. From the last, we have du = u d log u. Then, letting u = sec x, we have, d sec x = sec x d log sec x; and d log sec x = d log ( 1 / cos x ) = -d log cos x = d ( -cos x ) / cos x = sin x dx / cos x = tan x dx. Thence, d sec x = sec x tan x dx, and sec' x = sec x tan x, which is what we set out to show.
Assuming you mean what is the value of the derivative d/dx(a²x), then: d/dx(a²x) = a² The derivative (with respect to x) of d/dx(a²x) = d/dx(d/dx(a²x)) = d/dx(a²) = 0.
d/dx(uv)=u*dv/dx+v*du/dxd/dx(secxtanx)=secx*[d/dx(tanx)]+tanx*[d/dx(secx)]-The derivative of tanx is:d/dx(tan u)=[sec(u)]2*d/dx(u)d/dx(tan x)=[sec(x)]2*d/dx(x)d/dx(tan x)=[sec(x)]2*(1)d/dx(tan x)=(sec(x))2=sec2(x)-The derivative of secx is:d/dx(sec u)=[sec(u)tan(u)]*d/dx(u)d/dx(sec x)=[sec(x)tan(x)]*d/dx(x)d/dx(sec x)=[sec(x)tan(x)]*(1)d/dx(sec x)=sec(x)tan(x)d/dx(secxtanx)=secx*[sec2(x)]+tanx*[sec(x)tan(x)]d/dx(secxtanx)=sec3(x)+sec(x)tan2(x)
The answer is: L = pi x (D + d)/2 + 2 x ( C x Cos(a) + a x (D-d)/2) where a = arcsin(D-d)/(2 x C) in radians. Where C is the center distance, D is the large pulley diameter, and d is the small pulley diameter.
To generate an arctan function from a set of data, you will need to define the arctan. This function equation is as follows: arctan = (i/2) * log[(i+x) / (i-x)].
d=3c
d/dx [f(x) + g(x)] = d/dx [f(x)] + d/dx [g(x)] or f'(x) + g'(x) when x = 3, d/dx [f(x) + g(x)] = f'(3) + g'(3) = 1.1 + 7 = 8.1 d/dx [f(x)*g(x)] = f(x)*d/dx[g(x)] + d/dx[f(x)]*g(x) when x = 3, d/dx [f(x)*g(x)] = f(3)*g'(3) + f'(3)*g(3) = 5*7 + 1.1*(-4) = 35 - 4.4 = 31.1