answersLogoWhite

0


Best Answer

you get one of the best Wrestling teams that ever lived!

User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: If you generate d with x?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What solid geometric figures contain circles?

Sections of:cones, spheres, ellipsoids, tori, paraboloids, hyperboloids.In fact, consider the graph of any function in 2-dimensions that is always non-negative. Rotate the curve around the x-axis to generate a 3-d shape. A straight line will generate a cone, a square root function will generate a paraboloid, a semicircle will generate a sphere and so on. A wobbly line will generate a lumpy 3-d shape [NB: wobbly and lumpy are very technical terms ;) ]A plane at right angles to the x-axis will intersect all these curves in a circle.


What is the factor of 30 d to the 5 power?

2 x 3 x 5 x d x d x d x d x d = 30d5


What is the factor of the monomial 30d5?

2 x 3 x 5 x d x d x d x d x d = 30d5


What is 4d x d x d?

4d x d x d = 4d3


Where can you buy Alex rider the Gemini project?

Well for one you cant buy Alex Rider the Gemini Project because it doesn't exist what your after is Alex Rider Point Blanc and as for that you can buy it in many places like amazon or got to the libary and get it :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :p :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :o :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :x :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :) :)


How do you prove that the derivative of sec x is equal to sec x tan x?

Show that sec'x = d/dx (sec x) = sec x tan x. First, take note that sec x = 1/cos x; d sin x = cos x dx; d cos x = -sin x dx; and d log u = du/u. From the last, we have du = u d log u. Then, letting u = sec x, we have, d sec x = sec x d log sec x; and d log sec x = d log ( 1 / cos x ) = -d log cos x = d ( -cos x ) / cos x = sin x dx / cos x = tan x dx. Thence, d sec x = sec x tan x dx, and sec' x = sec x tan x, which is what we set out to show.


What is the derivative of ddx(a2x)?

Assuming you mean what is the value of the derivative d/dx(a²x), then: d/dx(a²x) = a² The derivative (with respect to x) of d/dx(a²x) = d/dx(d/dx(a²x)) = d/dx(a²) = 0.


What is the derivative of secxtanx?

d/dx(uv)=u*dv/dx+v*du/dxd/dx(secxtanx)=secx*[d/dx(tanx)]+tanx*[d/dx(secx)]-The derivative of tanx is:d/dx(tan u)=[sec(u)]2*d/dx(u)d/dx(tan x)=[sec(x)]2*d/dx(x)d/dx(tan x)=[sec(x)]2*(1)d/dx(tan x)=(sec(x))2=sec2(x)-The derivative of secx is:d/dx(sec u)=[sec(u)tan(u)]*d/dx(u)d/dx(sec x)=[sec(x)tan(x)]*d/dx(x)d/dx(sec x)=[sec(x)tan(x)]*(1)d/dx(sec x)=sec(x)tan(x)d/dx(secxtanx)=secx*[sec2(x)]+tanx*[sec(x)tan(x)]d/dx(secxtanx)=sec3(x)+sec(x)tan2(x)


Formula to calculate v-belt length?

The answer is: L = pi x (D + d)/2 + 2 x ( C x Cos(a) + a x (D-d)/2) where a = arcsin(D-d)/(2 x C) in radians. Where C is the center distance, D is the large pulley diameter, and d is the small pulley diameter.


What does d mean in 1 x c x 3 equals d?

d=3c


How do you generate an arctan function from a set of data?

To generate an arctan function from a set of data, you will need to define the arctan. This function equation is as follows: arctan = (i/2) * log[(i+x) / (i-x)].


What is the derivative of f plus g of 3 and f times g of 3 given that f of 3 equals 5 d dx f of 3 equals 1.1 g of 3 equals -4 d dx g of 3 equals 7 Also please explain QUICK THANK YOU?

d/dx [f(x) + g(x)] = d/dx [f(x)] + d/dx [g(x)] or f'(x) + g'(x) when x = 3, d/dx [f(x) + g(x)] = f'(3) + g'(3) = 1.1 + 7 = 8.1 d/dx [f(x)*g(x)] = f(x)*d/dx[g(x)] + d/dx[f(x)]*g(x) when x = 3, d/dx [f(x)*g(x)] = f(3)*g'(3) + f'(3)*g(3) = 5*7 + 1.1*(-4) = 35 - 4.4 = 31.1