answersLogoWhite

0

Who was UGA's first Heisman Trophy Winner?

Updated: 8/16/2019
User Avatar

Wiki User

14y ago

Best Answer

Frank Sinkwich

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Who was UGA's first Heisman Trophy Winner?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What has the author Giovanni Ugas written?

Giovanni Ugas has written: 'Il commercio arcaico in Sardegna' -- subject(s): Commerce, Antiquities


How many Ugas have there been so far?

Their has been 9


How many ugas have there been?

I think there has been 7, cause when I went to the University of Georgia there was 6 tombstones and one died today November 19, 2009.


What are some five letter words with 2nd letter U and 3rd letter G and 4th letter A and 5th letter S?

According to SOWPODS (the combination of Scrabble dictionaries used around the world) there are 2 words with the pattern -UGAS. That is, five letter words with 2nd letter U and 3rd letter G and 4th letter A and 5th letter S. In alphabetical order, they are: gugas yugas


What are some eight letter words with 5th letter U and 6th letter G and 7th letter A and 8th letter S?

According to SOWPODS (the combination of Scrabble dictionaries used around the world) there are 3 words with the pattern ----UGAS. That is, eight letter words with 5th letter U and 6th letter G and 7th letter A and 8th letter S. In alphabetical order, they are: meshugas sevrugas verrugas


What is the contact number of Mahinda rajapaksa?

+94 713961211


What amino acid has more than one codon?

Living things, from bacteria to humans, depend on a workforce of proteins to carry out essential tasks within their cells. Proteins are chains of amino acids that are strung together according to instructions encoded within that most important of molecules - DNA. The string of "letters" that make up DNA correspond to chains of amino acids, and they are read in threes, with every combination representing one of many amino acids. Until now, scientists believed that this relationship is unambiguous - within any single genome, every three-letter combination maps to one and only one amino acid. This strict one-to-one relationship is a tenet of genetics, but new research shows that it's not an absolute one. A team of American scientists have found a surprising exception to this rule, within a sea microbe called Euplotes crassus. In its genome, one particular triplet of DNA letters can stand for one of two different amino acids - cysteine or selenocysteine - even within the same gene. It all depends on context. This is the first time that such dual-coding has been spotted in the genes of any living thing. Genetics 101 Before I go any further, it's probably a good idea to have a quick primer on the genetic code for non-scientists. Anyone with prior knowledge of genetics can just skip the next four paragraphs. DNA is a chain of four molecules called nucleotides - adenine, cytosine, guanine and thymine, represented by the letter A, C, G and T. These sequences are transcribed into a similar molecule called messenger RNA (mRNA), which contains three of the same nucleotides, but replaces thymine with uracil (U). It's the information coded by mRNA that is finally translated into proteins. Proteins are built from 20 different amino acids, chained together in various combinations. In mRNA, every three letters corresponds to a specific amino acid. These three-letter combinations are called "codons", the genetic equivalent of words. For example, the codon CCC (three cytosines in a row) corresponds to the amino acid proline, while AAA (three alanines) corresponds to lysine. And some codons act as full-stops, indicating that the amino acid chain has come to an end. This genetic code is almost universal. The same codons almost always match up to the same amino acids in tiny bacteria, tall trees and thoughtful humans. There are a few deviations from the universal template, but even then, the differences are relatively minor. Think about computer keyboards - almost all have the same configuration of keys for various letters and symbols, but some will have the @ key in a different place. The genetic code is redundant, so that several codons represent the same single amino acid, but there are no ambiguities. There are no examples of a single codon within any genome that represents more than one amino acid. That is, until now. The Euplotes crassus Code Anton Turanov, Alexey Lubanov and Vladimir Gladyshev from the University of Nebraska have discovered that in Euplotes crassus, the UGA codon can mean either cysteine or selenocysteine, depending on its location in the gene. In the universal code, UGA is a stop signal but many species use it to signify selenocysteine, an amino acid that isn't represented in the universal code. This alternative translation of UGA into selenocysteine hinges on a structure called a SECIS element. The SECIS is part of the mRNA molecule itself but sits outside the region that actually codes for amino acids. It's like a genetic Shift key - its presence changes the meaning of UGA codons that sit before it. What makes E.crassus unique is the fact that its UGA codons can mean either selenocysteine or cysteine - a choice between two amino acids rather than one amino acid and a stop signal. Turanov and Lubanov analysed the microbe's tRNAs -molecules with one end that recognises a specific codon and another that sticks to its corresponding amino acid. These are the decoders that translate strings of codons into strings of amino acids. It turned out that E.crassus has different tRNAs that recognise UGA - one of these matches the codon with cysteine and another matches it with selenocysteine. Turanov and Lubanov also purified a protein from E.crassus called Tr1. Its RNA has a SECIS element and five UGA codons, and the duo found that the first four of these are translated into cysteines and the fifth into selenocysteine. Location is all-important when it comes to working out which interpretation comes out top. When Turanov and Lubanov added lots of UGA codons at sites throughout the TR1 gene, they found the vast majority were translated into cysteines. Only those inserted at the end of the gene, within its final 20 codons and near the SECIS element, were interpreted as selenocysteines. So the SECIS element, in its Shift-key role, affects the fate of nearby UGAs. To confirm that, Turanov and Lubanov replaced the entire SECIS element in the TR1 gene with an equivalent element from a different gene and a different species. They found that this new SECIS element had a wider zone of influence; when it was introduced, UGA codons that sat outside the final 20 were translated into selenocysteines instead of cysteines. So in E.crassus, the UGA codon is not tied to a single fate - it has a choice. It can be interpreted in two different ways, depending on its location and that of the SECIS element that influences it. One codon, two amino acids - it's a unique set-up and further proof that the genetic code, universal though it almost is, is open to expansion and evolutionary change. Reference: A. A. Turanov, A. V. Lobanov, D. E. Fomenko, H. G. Morrison, M. L. Sogin, L. A. Klobutcher, D. L. Hatfield, V. N. Gladyshev (2009). Genetic Code Supports Targeted Insertion of Two Amino Acids by One Codon Science, 323 (5911), 259-261 DOI: 10.1126/science.1164748


What actors and actresses appeared in The Lingo Show - 2012?

The cast of The Talent Show Story - 2012 includes: Jedward as Themselves Pam Ayres as herself Jordan Banjo as Himself - Diversity Gary Barlow as himself Elaine Bedell as herself Bob Blackman as himself Fern Britton as herself Alexandra Burke as herself Marti Caine as herself Nicki Chapman as herself Charlotte Church as herself Tulisa Contostavlos as herself Simon Cowell as himself Bobby Crush as himself Freddie Davies as himself Les Dawson as himself Demetrios Demetriou as Himself - Stavros Flatley Lagi Demetriou as Himself - Stavros Flatley Les Dennis as himself One Direction as Themselves Declan Donnelly as himself Danny Foster as himself Neil Fox as himself Gareth Gates as himself Carrie Grant as herself Hughie Green as himself Siobhan Greene as herself Edward Grimes as himself Nigel Hall as himself Tony Hatch as himself Lorraine Heggessey as herself Lenny Henry as himself Derek Hobson as himself Amanda Holden as herself Mary Hopkin as herself John Kaye Cooper as himself Patrick Kielty as herself Perri Kiely as Himself - Diversity Myleene Klass as herself Bonnie Langford as herself Eddie Large as himself Carroll Levis as himself David Liddiment as himself Syd Little as himself Nigel Lythgoe as himself Laurie Mansfield as himself Kym Marsh as herself Royston Mayoh as himself Jane McDonald as herself Anthony McPartlin as himself Dannii Minogue as herself Piers Morgan as himself Olly Murs as himself Nina Myskow as herself Richard Park as himself Nicholas Parsons as himself Pam Rigby as herself Claudia Rosencrantz as herself Kelly Rowland as herself Chico Slimani as himself Joss Stone as herself Connie Talbot as herself Gavin Talbot as Himself - Father of Connie Brian Tesler as himself Jack the Lad Swing as Themselves Robert Unwin as himself Edward Upcott as Himself - Spellbound Alex Uttley as Himself - Spellbound Louis Walsh as himself Victoria Wood as Herself - Narrator Will Young as himself Lena Zavaroni as herself Victor Zavaroni as Himself - Father of Lena