A buoyant force equals the weight of the fluid being displaced
Yes, there is a buoyant force acting on you when you are submerged in a fluid. However, whether you float or sink depends on the relationship between the buoyant force and your weight. If the buoyant force is greater than your weight, you will float; if it is less, you will sink.
Buoyant force is based upon the mass of the water displaced. Therefore, two objects will have the same buoyant force if they have the some volumes.
The force opposing the buoyant force is the force of gravity. Gravity pulls objects downward, creating a force that must be overcome by the buoyant force in order for an object to float in a fluid.
The buoyant force on an object submerged in a liquid is equal to the weight of the displaced liquid. The density of the liquid affects the buoyant force as denser liquids will exert a greater buoyant force on an object compared to less dense liquids.
Buoyant force is the upward force exerted by a fluid on an object immersed in it. The buoyant force helps objects float by counteracting the force of gravity pulling the object down. Therefore, the greater the buoyant force acting on an object, the better its ability to float.
The buoyant force exerted on an object immersed in a liquid is equal to the weight of the liquid displaced by the object. The buoyant force is directly proportional to the density of the liquid. Therefore, the denser the liquid, the greater the buoyant force it exerts on the object.
The buoyant force depends on the volume of liquid displaced and the density of the liquid.
The force working against the buoyant force is gravity. Gravity pulls objects downward, while the buoyant force pushes objects upward when they are immersed in a fluid.
The buoyant force is a contact force, exerted by contact with a liquid that displaces the liquid within a gravity field. No contact, no force.
The weight of an object immersed in a buoyant liquid does not affect the buoyant force on the object. The buoyant force is determined by the volume of the liquid displaced by the object, not by the weight of the object itself.
The Buoyant Force
Buoyant force reduces the weight of the body